منابع مشابه
Average Degree-Eccentricity Energy of Graphs
The concept of average degree-eccentricity matrix ADE(G) of a connected graph $G$ is introduced. Some coefficients of the characteristic polynomial of ADE(G) are obtained, as well as a bound for the eigenvalues of ADE(G). We also introduce the average degree-eccentricity graph energy and establish bounds for it.
متن کاملOn the energy of some circulant graphs
We give an explicit construction of circulant graphs of very high energy. This construction is based on Gauss sums. We also show the Littlewood conjecture can be used to establish new result for a certain class of circulant graphs. © 2005 Elsevier Inc. All rights reserved. AMS classification: 05C35; 05C50; 11T24; 42A05
متن کاملthe eigenvalues and energy of integral circulant graphs
a graph is called textit{circulant} if it is a cayley graph on a cyclic group, i.e. its adjacency matrix is circulant. let $d$ be a set of positive, proper divisors of the integer $n>1$. the integral circulant graph $icg_{n}(d)$ has the vertex set $mathbb{z}_{n}$ and the edge set e$(icg_{n}(d))= {{a,b}; gcd(a-b,n)in d }$. let $n=p_{1}p_{2}cdots p_{k}m$, where $p_{1},p_{2},cdots,p_{k}$ are disti...
متن کاملNew results on the energy of integral circulant graphs
Circulant graphs are an important class of interconnection networks in parallel and distributed computing. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer as well. The integral circulant graph ICGn(D) has the vertex set Zn = {0, 1, 2, . . . , n− 1} and vertices a and b are adjacent if gcd(a− b, n) ∈ D, where D ⊆ {d : d | n...
متن کاملOn the energy of non-commuting graphs
For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2008
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.11.003